Metamath Proof Explorer


Theorem rdgeq1

Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion rdgeq1 F = G rec F A = rec G A

Proof

Step Hyp Ref Expression
1 fveq1 F = G F g dom g = G g dom g
2 1 ifeq2d F = G if Lim dom g ran g F g dom g = if Lim dom g ran g G g dom g
3 2 ifeq2d F = G if g = A if Lim dom g ran g F g dom g = if g = A if Lim dom g ran g G g dom g
4 3 mpteq2dv F = G g V if g = A if Lim dom g ran g F g dom g = g V if g = A if Lim dom g ran g G g dom g
5 recseq g V if g = A if Lim dom g ran g F g dom g = g V if g = A if Lim dom g ran g G g dom g recs g V if g = A if Lim dom g ran g F g dom g = recs g V if g = A if Lim dom g ran g G g dom g
6 4 5 syl F = G recs g V if g = A if Lim dom g ran g F g dom g = recs g V if g = A if Lim dom g ran g G g dom g
7 df-rdg rec F A = recs g V if g = A if Lim dom g ran g F g dom g
8 df-rdg rec G A = recs g V if g = A if Lim dom g ran g G g dom g
9 6 7 8 3eqtr4g F = G rec F A = rec G A