Metamath Proof Explorer


Theorem rdgeq2

Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion rdgeq2 A = B rec F A = rec F B

Proof

Step Hyp Ref Expression
1 ifeq1 A = B if g = A if Lim dom g ran g F g dom g = if g = B if Lim dom g ran g F g dom g
2 1 mpteq2dv A = B g V if g = A if Lim dom g ran g F g dom g = g V if g = B if Lim dom g ran g F g dom g
3 recseq g V if g = A if Lim dom g ran g F g dom g = g V if g = B if Lim dom g ran g F g dom g recs g V if g = A if Lim dom g ran g F g dom g = recs g V if g = B if Lim dom g ran g F g dom g
4 2 3 syl A = B recs g V if g = A if Lim dom g ran g F g dom g = recs g V if g = B if Lim dom g ran g F g dom g
5 df-rdg rec F A = recs g V if g = A if Lim dom g ran g F g dom g
6 df-rdg rec F B = recs g V if g = B if Lim dom g ran g F g dom g
7 4 5 6 3eqtr4g A = B rec F A = rec F B