Metamath Proof Explorer


Theorem rdglem1

Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995)

Ref Expression
Assertion rdglem1 f | x On f Fn x y x f y = G f y = g | z On g Fn z w z g w = G g w

Proof

Step Hyp Ref Expression
1 eqid f | x On f Fn x y x f y = G f y = f | x On f Fn x y x f y = G f y
2 1 tfrlem3 f | x On f Fn x y x f y = G f y = g | z On g Fn z v z g v = G g v
3 fveq2 v = w g v = g w
4 reseq2 v = w g v = g w
5 4 fveq2d v = w G g v = G g w
6 3 5 eqeq12d v = w g v = G g v g w = G g w
7 6 cbvralvw v z g v = G g v w z g w = G g w
8 7 anbi2i g Fn z v z g v = G g v g Fn z w z g w = G g w
9 8 rexbii z On g Fn z v z g v = G g v z On g Fn z w z g w = G g w
10 9 abbii g | z On g Fn z v z g v = G g v = g | z On g Fn z w z g w = G g w
11 2 10 eqtri f | x On f Fn x y x f y = G f y = g | z On g Fn z w z g w = G g w