Metamath Proof Explorer


Theorem rdglim2a

Description: The value of the recursive definition generator at a limit ordinal, in terms of indexed union of all smaller values. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion rdglim2a B C Lim B rec F A B = x B rec F A x

Proof

Step Hyp Ref Expression
1 rdglim2 B C Lim B rec F A B = y | x B y = rec F A x
2 fvex rec F A x V
3 2 dfiun2 x B rec F A x = y | x B y = rec F A x
4 1 3 eqtr4di B C Lim B rec F A B = x B rec F A x