Metamath Proof Explorer


Theorem rdgseg

Description: The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion rdgseg B dom rec F A rec F A B V

Proof

Step Hyp Ref Expression
1 df-rdg rec F A = recs g V if g = A if Lim dom g ran g F g dom g
2 1 reseq1i rec F A B = recs g V if g = A if Lim dom g ran g F g dom g B
3 rdglem1 w | y On w Fn y v y w v = g V if g = A if Lim dom g ran g F g dom g w v = f | x On f Fn x y x f y = g V if g = A if Lim dom g ran g F g dom g f y
4 3 tfrlem9a B dom recs g V if g = A if Lim dom g ran g F g dom g recs g V if g = A if Lim dom g ran g F g dom g B V
5 1 dmeqi dom rec F A = dom recs g V if g = A if Lim dom g ran g F g dom g
6 4 5 eleq2s B dom rec F A recs g V if g = A if Lim dom g ran g F g dom g B V
7 2 6 eqeltrid B dom rec F A rec F A B V