Metamath Proof Explorer


Theorem rdgsuc

Description: The value of the recursive definition generator at a successor. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion rdgsuc B On rec F A suc B = F rec F A B

Proof

Step Hyp Ref Expression
1 rdgfnon rec F A Fn On
2 1 fndmi dom rec F A = On
3 2 eleq2i B dom rec F A B On
4 rdgsucg B dom rec F A rec F A suc B = F rec F A B
5 3 4 sylbir B On rec F A suc B = F rec F A B