Metamath Proof Explorer


Theorem rdgsucg

Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014)

Ref Expression
Assertion rdgsucg B dom rec F A rec F A suc B = F rec F A B

Proof

Step Hyp Ref Expression
1 rdgdmlim Lim dom rec F A
2 limsuc Lim dom rec F A B dom rec F A suc B dom rec F A
3 1 2 ax-mp B dom rec F A suc B dom rec F A
4 eqid x V if x = A if Lim dom x ran x F x dom x = x V if x = A if Lim dom x ran x F x dom x
5 rdgvalg y dom rec F A rec F A y = x V if x = A if Lim dom x ran x F x dom x rec F A y
6 rdgseg y dom rec F A rec F A y V
7 rdgfun Fun rec F A
8 funfn Fun rec F A rec F A Fn dom rec F A
9 7 8 mpbi rec F A Fn dom rec F A
10 limord Lim dom rec F A Ord dom rec F A
11 1 10 ax-mp Ord dom rec F A
12 4 5 6 9 11 tz7.44-2 suc B dom rec F A rec F A suc B = F rec F A B
13 3 12 sylbi B dom rec F A rec F A suc B = F rec F A B