Metamath Proof Explorer


Theorem rdgsucmptf

Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses rdgsucmptf.1 _ x A
rdgsucmptf.2 _ x B
rdgsucmptf.3 _ x D
rdgsucmptf.4 F = rec x V C A
rdgsucmptf.5 x = F B C = D
Assertion rdgsucmptf B On D V F suc B = D

Proof

Step Hyp Ref Expression
1 rdgsucmptf.1 _ x A
2 rdgsucmptf.2 _ x B
3 rdgsucmptf.3 _ x D
4 rdgsucmptf.4 F = rec x V C A
5 rdgsucmptf.5 x = F B C = D
6 rdgsuc B On rec x V C A suc B = x V C rec x V C A B
7 4 fveq1i F suc B = rec x V C A suc B
8 4 fveq1i F B = rec x V C A B
9 8 fveq2i x V C F B = x V C rec x V C A B
10 6 7 9 3eqtr4g B On F suc B = x V C F B
11 fvex F B V
12 nfmpt1 _ x x V C
13 12 1 nfrdg _ x rec x V C A
14 4 13 nfcxfr _ x F
15 14 2 nffv _ x F B
16 eqid x V C = x V C
17 15 3 5 16 fvmptf F B V D V x V C F B = D
18 11 17 mpan D V x V C F B = D
19 10 18 sylan9eq B On D V F suc B = D