Metamath Proof Explorer


Theorem rdgvalg

Description: Value of the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion rdgvalg B dom rec F A rec F A B = g V if g = A if Lim dom g ran g F g dom g rec F A B

Proof

Step Hyp Ref Expression
1 df-rdg rec F A = recs g V if g = A if Lim dom g ran g F g dom g
2 1 tfr2a B dom rec F A rec F A B = g V if g = A if Lim dom g ran g F g dom g rec F A B