Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
rdiv
Next ⟩
mdiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
rdiv
Description:
Right-division.
(Contributed by
BJ
, 6-Jun-2019)
Ref
Expression
Hypotheses
ldiv.a
⊢
φ
→
A
∈
ℂ
ldiv.b
⊢
φ
→
B
∈
ℂ
ldiv.c
⊢
φ
→
C
∈
ℂ
rdiv.an0
⊢
φ
→
A
≠
0
Assertion
rdiv
⊢
φ
→
A
⁢
B
=
C
↔
B
=
C
A
Proof
Step
Hyp
Ref
Expression
1
ldiv.a
⊢
φ
→
A
∈
ℂ
2
ldiv.b
⊢
φ
→
B
∈
ℂ
3
ldiv.c
⊢
φ
→
C
∈
ℂ
4
rdiv.an0
⊢
φ
→
A
≠
0
5
1
2
mulcomd
⊢
φ
→
A
⁢
B
=
B
⁢
A
6
5
eqeq1d
⊢
φ
→
A
⁢
B
=
C
↔
B
⁢
A
=
C
7
2
1
3
4
ldiv
⊢
φ
→
B
⁢
A
=
C
↔
B
=
C
A
8
6
7
bitrd
⊢
φ
→
A
⁢
B
=
C
↔
B
=
C
A