Metamath Proof Explorer


Theorem rdiv

Description: Right-division. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a φ A
ldiv.b φ B
ldiv.c φ C
rdiv.an0 φ A 0
Assertion rdiv φ A B = C B = C A

Proof

Step Hyp Ref Expression
1 ldiv.a φ A
2 ldiv.b φ B
3 ldiv.c φ C
4 rdiv.an0 φ A 0
5 1 2 mulcomd φ A B = B A
6 5 eqeq1d φ A B = C B A = C
7 2 1 3 4 ldiv φ B A = C B = C A
8 6 7 bitrd φ A B = C B = C A