Metamath Proof Explorer


Theorem re1luk2

Description: luk-2 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re1luk2 ¬ φ φ φ

Proof

Step Hyp Ref Expression
1 tbw-negdf ¬ φ φ φ ¬ φ
2 tbw-ax2 φ ¬ φ ¬ φ φ φ ¬ φ
3 tbwlem4 φ ¬ φ ¬ φ φ φ ¬ φ ¬ φ φ φ ¬ φ φ ¬ φ
4 2 3 ax-mp ¬ φ φ φ ¬ φ φ ¬ φ
5 1 4 ax-mp φ ¬ φ
6 tbw-ax1 φ ¬ φ ¬ φ φ φ φ
7 5 6 ax-mp ¬ φ φ φ φ
8 tbw-ax3 φ φ φ
9 7 8 tbwsyl ¬ φ φ φ