Metamath Proof Explorer


Theorem re2ndc

Description: The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion re2ndc topGen ran . 2 nd 𝜔

Proof

Step Hyp Ref Expression
1 eqid topGen . × = topGen . ×
2 1 tgqioo topGen ran . = topGen . ×
3 qtopbas . × TopBases
4 omelon ω On
5 qnnen
6 xpen × ×
7 5 5 6 mp2an × ×
8 xpnnen ×
9 7 8 entri ×
10 nnenom ω
11 9 10 entr2i ω ×
12 isnumi ω On ω × × dom card
13 4 11 12 mp2an × dom card
14 ioof . : * × * 𝒫
15 ffun . : * × * 𝒫 Fun .
16 14 15 ax-mp Fun .
17 qssre
18 ressxr *
19 17 18 sstri *
20 xpss12 * * × * × *
21 19 19 20 mp2an × * × *
22 14 fdmi dom . = * × *
23 21 22 sseqtrri × dom .
24 fores Fun . × dom . . × : × onto . ×
25 16 23 24 mp2an . × : × onto . ×
26 fodomnum × dom card . × : × onto . × . × ×
27 13 25 26 mp2 . × ×
28 9 10 entri × ω
29 domentr . × × × ω . × ω
30 27 28 29 mp2an . × ω
31 2ndci . × TopBases . × ω topGen . × 2 nd 𝜔
32 3 30 31 mp2an topGen . × 2 nd 𝜔
33 2 32 eqeltri topGen ran . 2 nd 𝜔