Metamath Proof Explorer


Theorem readdcan

Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion readdcan A B C C + A = C + B A = B

Proof

Step Hyp Ref Expression
1 ltadd2 A B C A < B C + A < C + B
2 1 notbid A B C ¬ A < B ¬ C + A < C + B
3 simp2 A B C B
4 simp1 A B C A
5 simp3 A B C C
6 3 4 5 ltadd2d A B C B < A C + B < C + A
7 6 notbid A B C ¬ B < A ¬ C + B < C + A
8 2 7 anbi12d A B C ¬ A < B ¬ B < A ¬ C + A < C + B ¬ C + B < C + A
9 4 3 lttri3d A B C A = B ¬ A < B ¬ B < A
10 5 4 readdcld A B C C + A
11 5 3 readdcld A B C C + B
12 10 11 lttri3d A B C C + A = C + B ¬ C + A < C + B ¬ C + B < C + A
13 8 9 12 3bitr4rd A B C C + A = C + B A = B