Metamath Proof Explorer


Theorem rebtwnz

Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of Apostol p. 28. (Contributed by NM, 15-Nov-2004)

Ref Expression
Assertion rebtwnz A ∃! x x A A < x + 1

Proof

Step Hyp Ref Expression
1 renegcl A A
2 zbtwnre A ∃! y A y y < - A + 1
3 1 2 syl A ∃! y A y y < - A + 1
4 znegcl x x
5 znegcl y y
6 zcn y y
7 zcn x x
8 negcon2 y x y = x x = y
9 6 7 8 syl2an y x y = x x = y
10 5 9 reuhyp y ∃! x y = x
11 breq2 y = x A y A x
12 breq1 y = x y < - A + 1 x < - A + 1
13 11 12 anbi12d y = x A y y < - A + 1 A x x < - A + 1
14 4 10 13 reuxfr1 ∃! y A y y < - A + 1 ∃! x A x x < - A + 1
15 zre x x
16 leneg x A x A A x
17 16 ancoms A x x A A x
18 peano2rem A A 1
19 ltneg A 1 x A 1 < x x < A 1
20 18 19 sylan A x A 1 < x x < A 1
21 1re 1
22 ltsubadd A 1 x A 1 < x A < x + 1
23 21 22 mp3an2 A x A 1 < x A < x + 1
24 recn A A
25 ax-1cn 1
26 negsubdi A 1 A 1 = - A + 1
27 24 25 26 sylancl A A 1 = - A + 1
28 27 adantr A x A 1 = - A + 1
29 28 breq2d A x x < A 1 x < - A + 1
30 20 23 29 3bitr3d A x A < x + 1 x < - A + 1
31 17 30 anbi12d A x x A A < x + 1 A x x < - A + 1
32 15 31 sylan2 A x x A A < x + 1 A x x < - A + 1
33 32 bicomd A x A x x < - A + 1 x A A < x + 1
34 33 reubidva A ∃! x A x x < - A + 1 ∃! x x A A < x + 1
35 14 34 syl5bb A ∃! y A y y < - A + 1 ∃! x x A A < x + 1
36 3 35 mpbid A ∃! x x A A < x + 1