| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|
| 2 |
|
zbtwnre |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
znegcl |
|
| 5 |
|
znegcl |
|
| 6 |
|
zcn |
|
| 7 |
|
zcn |
|
| 8 |
|
negcon2 |
|
| 9 |
6 7 8
|
syl2an |
|
| 10 |
5 9
|
reuhyp |
|
| 11 |
|
breq2 |
|
| 12 |
|
breq1 |
|
| 13 |
11 12
|
anbi12d |
|
| 14 |
4 10 13
|
reuxfr1 |
|
| 15 |
|
zre |
|
| 16 |
|
leneg |
|
| 17 |
16
|
ancoms |
|
| 18 |
|
peano2rem |
|
| 19 |
|
ltneg |
|
| 20 |
18 19
|
sylan |
|
| 21 |
|
1re |
|
| 22 |
|
ltsubadd |
|
| 23 |
21 22
|
mp3an2 |
|
| 24 |
|
recn |
|
| 25 |
|
ax-1cn |
|
| 26 |
|
negsubdi |
|
| 27 |
24 25 26
|
sylancl |
|
| 28 |
27
|
adantr |
|
| 29 |
28
|
breq2d |
|
| 30 |
20 23 29
|
3bitr3d |
|
| 31 |
17 30
|
anbi12d |
|
| 32 |
15 31
|
sylan2 |
|
| 33 |
32
|
bicomd |
|
| 34 |
33
|
reubidva |
|
| 35 |
14 34
|
bitrid |
|
| 36 |
3 35
|
mpbid |
|