Metamath Proof Explorer


Theorem rec11

Description: Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion rec11 A A 0 B B 0 1 A = 1 B A = B

Proof

Step Hyp Ref Expression
1 1cnd A A 0 B B 0 1
2 reccl B B 0 1 B
3 2 adantl A A 0 B B 0 1 B
4 simpl A A 0 B B 0 A A 0
5 divmul 1 1 B A A 0 1 A = 1 B A 1 B = 1
6 1 3 4 5 syl3anc A A 0 B B 0 1 A = 1 B A 1 B = 1
7 simpll A A 0 B B 0 A
8 simprl A A 0 B B 0 B
9 simprr A A 0 B B 0 B 0
10 divrec A B B 0 A B = A 1 B
11 7 8 9 10 syl3anc A A 0 B B 0 A B = A 1 B
12 11 eqeq1d A A 0 B B 0 A B = 1 A 1 B = 1
13 diveq1 A B B 0 A B = 1 A = B
14 7 8 9 13 syl3anc A A 0 B B 0 A B = 1 A = B
15 6 12 14 3bitr2d A A 0 B B 0 1 A = 1 B A = B