Metamath Proof Explorer


Theorem rec11d

Description: Reciprocal is one-to-one. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divne0d.3 φ A 0
divne0d.4 φ B 0
rec11d.5 φ 1 A = 1 B
Assertion rec11d φ A = B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divne0d.3 φ A 0
4 divne0d.4 φ B 0
5 rec11d.5 φ 1 A = 1 B
6 rec11 A A 0 B B 0 1 A = 1 B A = B
7 1 3 2 4 6 syl22anc φ 1 A = 1 B A = B
8 5 7 mpbid φ A = B