Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
rec11i
Next ⟩
divcli
Metamath Proof Explorer
Ascii
Unicode
Theorem
rec11i
Description:
Reciprocal is one-to-one.
(Contributed by
NM
, 16-Sep-1999)
Ref
Expression
Hypotheses
divclz.1
⊢
A
∈
ℂ
divclz.2
⊢
B
∈
ℂ
Assertion
rec11i
⊢
A
≠
0
∧
B
≠
0
→
1
A
=
1
B
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
divclz.1
⊢
A
∈
ℂ
2
divclz.2
⊢
B
∈
ℂ
3
rec11
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
=
1
B
↔
A
=
B
4
3
an4s
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
A
≠
0
∧
B
≠
0
→
1
A
=
1
B
↔
A
=
B
5
1
2
4
mpanl12
⊢
A
≠
0
∧
B
≠
0
→
1
A
=
1
B
↔
A
=
B