Metamath Proof Explorer
		
		
		
		Description:  Reciprocal is one-to-one.  (Contributed by NM, 16-Sep-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divclz.1 |  | 
					
						|  |  | divclz.2 |  | 
					
						|  |  | divneq0.3 |  | 
					
						|  |  | divneq0.4 |  | 
				
					|  | Assertion | rec11ii |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divclz.1 |  | 
						
							| 2 |  | divclz.2 |  | 
						
							| 3 |  | divneq0.3 |  | 
						
							| 4 |  | divneq0.4 |  | 
						
							| 5 | 1 2 | rec11i |  | 
						
							| 6 | 3 4 5 | mp2an |  |