Metamath Proof Explorer


Theorem rec11r

Description: Mutual reciprocals. (Contributed by Paul Chapman, 18-Oct-2007)

Ref Expression
Assertion rec11r A A 0 B B 0 1 A = B 1 B = A

Proof

Step Hyp Ref Expression
1 1cnd A A 0 B B 0 1
2 simprl A A 0 B B 0 B
3 simpll A A 0 B B 0 A
4 simplr A A 0 B B 0 A 0
5 divmul2 1 B A A 0 1 A = B 1 = A B
6 1 2 3 4 5 syl112anc A A 0 B B 0 1 A = B 1 = A B
7 simprr A A 0 B B 0 B 0
8 divmul3 1 A B B 0 1 B = A 1 = A B
9 1 3 2 7 8 syl112anc A A 0 B B 0 1 B = A 1 = A B
10 6 9 bitr4d A A 0 B B 0 1 A = B 1 B = A