Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
rec11r
Next ⟩
divmuldiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
rec11r
Description:
Mutual reciprocals.
(Contributed by
Paul Chapman
, 18-Oct-2007)
Ref
Expression
Assertion
rec11r
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
=
B
↔
1
B
=
A
Proof
Step
Hyp
Ref
Expression
1
1cnd
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
∈
ℂ
2
simprl
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
B
∈
ℂ
3
simpll
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
∈
ℂ
4
simplr
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
≠
0
5
divmul2
⊢
1
∈
ℂ
∧
B
∈
ℂ
∧
A
∈
ℂ
∧
A
≠
0
→
1
A
=
B
↔
1
=
A
⁢
B
6
1
2
3
4
5
syl112anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
=
B
↔
1
=
A
⁢
B
7
simprr
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
B
≠
0
8
divmul3
⊢
1
∈
ℂ
∧
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
1
B
=
A
↔
1
=
A
⁢
B
9
1
3
2
7
8
syl112anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
B
=
A
↔
1
=
A
⁢
B
10
6
9
bitr4d
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
=
B
↔
1
B
=
A