Metamath Proof Explorer


Theorem recan

Description: Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005)

Ref Expression
Assertion recan A B x x A = x B A = B

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 fvoveq1 x = 1 x A = 1 A
3 fvoveq1 x = 1 x B = 1 B
4 2 3 eqeq12d x = 1 x A = x B 1 A = 1 B
5 4 rspcv 1 x x A = x B 1 A = 1 B
6 1 5 ax-mp x x A = x B 1 A = 1 B
7 negicn i
8 fvoveq1 x = i x A = i A
9 fvoveq1 x = i x B = i B
10 8 9 eqeq12d x = i x A = x B i A = i B
11 10 rspcv i x x A = x B i A = i B
12 7 11 ax-mp x x A = x B i A = i B
13 12 oveq2d x x A = x B i i A = i i B
14 6 13 oveq12d x x A = x B 1 A + i i A = 1 B + i i B
15 replim A A = A + i A
16 mulid2 A 1 A = A
17 16 eqcomd A A = 1 A
18 17 fveq2d A A = 1 A
19 imre A A = i A
20 19 oveq2d A i A = i i A
21 18 20 oveq12d A A + i A = 1 A + i i A
22 15 21 eqtrd A A = 1 A + i i A
23 replim B B = B + i B
24 mulid2 B 1 B = B
25 24 eqcomd B B = 1 B
26 25 fveq2d B B = 1 B
27 imre B B = i B
28 27 oveq2d B i B = i i B
29 26 28 oveq12d B B + i B = 1 B + i i B
30 23 29 eqtrd B B = 1 B + i i B
31 22 30 eqeqan12d A B A = B 1 A + i i A = 1 B + i i B
32 14 31 syl5ibr A B x x A = x B A = B
33 oveq2 A = B x A = x B
34 33 fveq2d A = B x A = x B
35 34 ralrimivw A = B x x A = x B
36 32 35 impbid1 A B x x A = x B A = B