Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
reccl
Next ⟩
divcan2
Metamath Proof Explorer
Ascii
Unicode
Theorem
reccl
Description:
Closure law for reciprocal.
(Contributed by
NM
, 30-Apr-2005)
Ref
Expression
Assertion
reccl
⊢
A
∈
ℂ
∧
A
≠
0
→
1
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
divcl
⊢
1
∈
ℂ
∧
A
∈
ℂ
∧
A
≠
0
→
1
A
∈
ℂ
3
1
2
mp3an1
⊢
A
∈
ℂ
∧
A
≠
0
→
1
A
∈
ℂ