Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
reccld
Next ⟩
recne0d
Metamath Proof Explorer
Ascii
Unicode
Theorem
reccld
Description:
Closure law for reciprocal.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypotheses
div1d.1
⊢
φ
→
A
∈
ℂ
reccld.2
⊢
φ
→
A
≠
0
Assertion
reccld
⊢
φ
→
1
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
div1d.1
⊢
φ
→
A
∈
ℂ
2
reccld.2
⊢
φ
→
A
≠
0
3
reccl
⊢
A
∈
ℂ
∧
A
≠
0
→
1
A
∈
ℂ
4
1
2
3
syl2anc
⊢
φ
→
1
A
∈
ℂ