Metamath Proof Explorer


Theorem reccld

Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
reccld.2 φ A 0
Assertion reccld φ 1 A

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 reccld.2 φ A 0
3 reccl A A 0 1 A
4 1 2 3 syl2anc φ 1 A