Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
reccli
Next ⟩
recidi
Metamath Proof Explorer
Ascii
Unicode
Theorem
reccli
Description:
Closure law for reciprocal.
(Contributed by
NM
, 30-Apr-2005)
Ref
Expression
Hypotheses
divclz.1
⊢
A
∈
ℂ
reccl.2
⊢
A
≠
0
Assertion
reccli
⊢
1
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
divclz.1
⊢
A
∈
ℂ
2
reccl.2
⊢
A
≠
0
3
1
recclzi
⊢
A
≠
0
→
1
A
∈
ℂ
4
2
3
ax-mp
⊢
1
A
∈
ℂ