Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
recclzi
Next ⟩
recne0zi
Metamath Proof Explorer
Ascii
Unicode
Theorem
recclzi
Description:
Closure law for reciprocal.
(Contributed by
NM
, 30-Apr-2005)
Ref
Expression
Hypothesis
divclz.1
⊢
A
∈
ℂ
Assertion
recclzi
⊢
A
≠
0
→
1
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
divclz.1
⊢
A
∈
ℂ
2
reccl
⊢
A
∈
ℂ
∧
A
≠
0
→
1
A
∈
ℂ
3
1
2
mpan
⊢
A
≠
0
→
1
A
∈
ℂ