Metamath Proof Explorer


Theorem reccn2

Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014) (Revised by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypothesis reccn2.t T = if 1 A B 1 A B A 2
Assertion reccn2 A 0 B + y + z 0 z A < y 1 z 1 A < B

Proof

Step Hyp Ref Expression
1 reccn2.t T = if 1 A B 1 A B A 2
2 1rp 1 +
3 simpl A 0 B + A 0
4 eldifsn A 0 A A 0
5 3 4 sylib A 0 B + A A 0
6 absrpcl A A 0 A +
7 5 6 syl A 0 B + A +
8 rpmulcl A + B + A B +
9 7 8 sylancom A 0 B + A B +
10 ifcl 1 + A B + if 1 A B 1 A B +
11 2 9 10 sylancr A 0 B + if 1 A B 1 A B +
12 7 rphalfcld A 0 B + A 2 +
13 11 12 rpmulcld A 0 B + if 1 A B 1 A B A 2 +
14 1 13 eqeltrid A 0 B + T +
15 5 adantr A 0 B + z 0 z A < T A A 0
16 15 simpld A 0 B + z 0 z A < T A
17 simprl A 0 B + z 0 z A < T z 0
18 eldifsn z 0 z z 0
19 17 18 sylib A 0 B + z 0 z A < T z z 0
20 19 simpld A 0 B + z 0 z A < T z
21 16 20 mulcld A 0 B + z 0 z A < T A z
22 mulne0 A A 0 z z 0 A z 0
23 15 19 22 syl2anc A 0 B + z 0 z A < T A z 0
24 16 20 21 23 divsubdird A 0 B + z 0 z A < T A z A z = A A z z A z
25 16 mulid1d A 0 B + z 0 z A < T A 1 = A
26 25 oveq1d A 0 B + z 0 z A < T A 1 A z = A A z
27 1cnd A 0 B + z 0 z A < T 1
28 divcan5 1 z z 0 A A 0 A 1 A z = 1 z
29 27 19 15 28 syl3anc A 0 B + z 0 z A < T A 1 A z = 1 z
30 26 29 eqtr3d A 0 B + z 0 z A < T A A z = 1 z
31 20 mulid1d A 0 B + z 0 z A < T z 1 = z
32 20 16 mulcomd A 0 B + z 0 z A < T z A = A z
33 31 32 oveq12d A 0 B + z 0 z A < T z 1 z A = z A z
34 divcan5 1 A A 0 z z 0 z 1 z A = 1 A
35 27 15 19 34 syl3anc A 0 B + z 0 z A < T z 1 z A = 1 A
36 33 35 eqtr3d A 0 B + z 0 z A < T z A z = 1 A
37 30 36 oveq12d A 0 B + z 0 z A < T A A z z A z = 1 z 1 A
38 24 37 eqtrd A 0 B + z 0 z A < T A z A z = 1 z 1 A
39 38 fveq2d A 0 B + z 0 z A < T A z A z = 1 z 1 A
40 16 20 subcld A 0 B + z 0 z A < T A z
41 40 21 23 absdivd A 0 B + z 0 z A < T A z A z = A z A z
42 39 41 eqtr3d A 0 B + z 0 z A < T 1 z 1 A = A z A z
43 16 20 abssubd A 0 B + z 0 z A < T A z = z A
44 20 16 subcld A 0 B + z 0 z A < T z A
45 44 abscld A 0 B + z 0 z A < T z A
46 43 45 eqeltrd A 0 B + z 0 z A < T A z
47 14 adantr A 0 B + z 0 z A < T T +
48 47 rpred A 0 B + z 0 z A < T T
49 21 abscld A 0 B + z 0 z A < T A z
50 rpre B + B
51 50 ad2antlr A 0 B + z 0 z A < T B
52 49 51 remulcld A 0 B + z 0 z A < T A z B
53 simprr A 0 B + z 0 z A < T z A < T
54 43 53 eqbrtrd A 0 B + z 0 z A < T A z < T
55 9 adantr A 0 B + z 0 z A < T A B +
56 55 rpred A 0 B + z 0 z A < T A B
57 12 adantr A 0 B + z 0 z A < T A 2 +
58 57 rpred A 0 B + z 0 z A < T A 2
59 56 58 remulcld A 0 B + z 0 z A < T A B A 2
60 1re 1
61 min2 1 A B if 1 A B 1 A B A B
62 60 56 61 sylancr A 0 B + z 0 z A < T if 1 A B 1 A B A B
63 11 adantr A 0 B + z 0 z A < T if 1 A B 1 A B +
64 63 rpred A 0 B + z 0 z A < T if 1 A B 1 A B
65 64 56 57 lemul1d A 0 B + z 0 z A < T if 1 A B 1 A B A B if 1 A B 1 A B A 2 A B A 2
66 62 65 mpbid A 0 B + z 0 z A < T if 1 A B 1 A B A 2 A B A 2
67 1 66 eqbrtrid A 0 B + z 0 z A < T T A B A 2
68 20 abscld A 0 B + z 0 z A < T z
69 16 abscld A 0 B + z 0 z A < T A
70 69 recnd A 0 B + z 0 z A < T A
71 70 2halvesd A 0 B + z 0 z A < T A 2 + A 2 = A
72 69 68 resubcld A 0 B + z 0 z A < T A z
73 16 20 abs2difd A 0 B + z 0 z A < T A z A z
74 min1 1 A B if 1 A B 1 A B 1
75 60 56 74 sylancr A 0 B + z 0 z A < T if 1 A B 1 A B 1
76 1red A 0 B + z 0 z A < T 1
77 64 76 57 lemul1d A 0 B + z 0 z A < T if 1 A B 1 A B 1 if 1 A B 1 A B A 2 1 A 2
78 75 77 mpbid A 0 B + z 0 z A < T if 1 A B 1 A B A 2 1 A 2
79 1 78 eqbrtrid A 0 B + z 0 z A < T T 1 A 2
80 58 recnd A 0 B + z 0 z A < T A 2
81 80 mulid2d A 0 B + z 0 z A < T 1 A 2 = A 2
82 79 81 breqtrd A 0 B + z 0 z A < T T A 2
83 46 48 58 54 82 ltletrd A 0 B + z 0 z A < T A z < A 2
84 72 46 58 73 83 lelttrd A 0 B + z 0 z A < T A z < A 2
85 69 68 58 ltsubadd2d A 0 B + z 0 z A < T A z < A 2 A < z + A 2
86 84 85 mpbid A 0 B + z 0 z A < T A < z + A 2
87 71 86 eqbrtrd A 0 B + z 0 z A < T A 2 + A 2 < z + A 2
88 58 68 58 ltadd1d A 0 B + z 0 z A < T A 2 < z A 2 + A 2 < z + A 2
89 87 88 mpbird A 0 B + z 0 z A < T A 2 < z
90 58 68 55 89 ltmul2dd A 0 B + z 0 z A < T A B A 2 < A B z
91 16 20 absmuld A 0 B + z 0 z A < T A z = A z
92 91 oveq1d A 0 B + z 0 z A < T A z B = A z B
93 68 recnd A 0 B + z 0 z A < T z
94 51 recnd A 0 B + z 0 z A < T B
95 70 93 94 mul32d A 0 B + z 0 z A < T A z B = A B z
96 92 95 eqtrd A 0 B + z 0 z A < T A z B = A B z
97 90 96 breqtrrd A 0 B + z 0 z A < T A B A 2 < A z B
98 48 59 52 67 97 lelttrd A 0 B + z 0 z A < T T < A z B
99 46 48 52 54 98 lttrd A 0 B + z 0 z A < T A z < A z B
100 21 23 absrpcld A 0 B + z 0 z A < T A z +
101 46 51 100 ltdivmuld A 0 B + z 0 z A < T A z A z < B A z < A z B
102 99 101 mpbird A 0 B + z 0 z A < T A z A z < B
103 42 102 eqbrtrd A 0 B + z 0 z A < T 1 z 1 A < B
104 103 expr A 0 B + z 0 z A < T 1 z 1 A < B
105 104 ralrimiva A 0 B + z 0 z A < T 1 z 1 A < B
106 breq2 y = T z A < y z A < T
107 106 rspceaimv T + z 0 z A < T 1 z 1 A < B y + z 0 z A < y 1 z 1 A < B
108 14 105 107 syl2anc A 0 B + y + z 0 z A < y 1 z 1 A < B