Metamath Proof Explorer


Theorem recdiv

Description: The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion recdiv A A 0 B B 0 1 A B = B A

Proof

Step Hyp Ref Expression
1 1div1e1 1 1 = 1
2 1 oveq1i 1 1 A B = 1 A B
3 ax-1cn 1
4 ax-1ne0 1 0
5 3 4 pm3.2i 1 1 0
6 divdivdiv 1 1 1 0 A A 0 B B 0 1 1 A B = 1 B 1 A
7 3 5 6 mpanl12 A A 0 B B 0 1 1 A B = 1 B 1 A
8 2 7 eqtr3id A A 0 B B 0 1 A B = 1 B 1 A
9 mulid2 B 1 B = B
10 mulid2 A 1 A = A
11 9 10 oveqan12rd A B 1 B 1 A = B A
12 11 ad2ant2r A A 0 B B 0 1 B 1 A = B A
13 8 12 eqtrd A A 0 B B 0 1 A B = B A