Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
recdiv
Next ⟩
divcan6
Metamath Proof Explorer
Ascii
Unicode
Theorem
recdiv
Description:
The reciprocal of a ratio.
(Contributed by
NM
, 3-Aug-2004)
Ref
Expression
Assertion
recdiv
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
B
=
B
A
Proof
Step
Hyp
Ref
Expression
1
1div1e1
⊢
1
1
=
1
2
1
oveq1i
⊢
1
1
A
B
=
1
A
B
3
ax-1cn
⊢
1
∈
ℂ
4
ax-1ne0
⊢
1
≠
0
5
3
4
pm3.2i
⊢
1
∈
ℂ
∧
1
≠
0
6
divdivdiv
⊢
1
∈
ℂ
∧
1
∈
ℂ
∧
1
≠
0
∧
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
1
A
B
=
1
⁢
B
1
⁢
A
7
3
5
6
mpanl12
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
1
A
B
=
1
⁢
B
1
⁢
A
8
2
7
eqtr3id
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
B
=
1
⁢
B
1
⁢
A
9
mulid2
⊢
B
∈
ℂ
→
1
⁢
B
=
B
10
mulid2
⊢
A
∈
ℂ
→
1
⁢
A
=
A
11
9
10
oveqan12rd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
1
⁢
B
1
⁢
A
=
B
A
12
11
ad2ant2r
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
⁢
B
1
⁢
A
=
B
A
13
8
12
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
B
=
B
A