Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
recdiv2
Next ⟩
ddcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
recdiv2
Description:
Division into a reciprocal.
(Contributed by
NM
, 19-Oct-2007)
Ref
Expression
Assertion
recdiv2
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
B
=
1
A
⁢
B
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
divdiv1
⊢
1
∈
ℂ
∧
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
B
=
1
A
⁢
B
3
1
2
mp3an1
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
B
=
1
A
⁢
B