Metamath Proof Explorer


Theorem recdivd

Description: The reciprocal of a ratio. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divne0d.3 φ A 0
divne0d.4 φ B 0
Assertion recdivd φ 1 A B = B A

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divne0d.3 φ A 0
4 divne0d.4 φ B 0
5 recdiv A A 0 B B 0 1 A B = B A
6 1 3 2 4 5 syl22anc φ 1 A B = B A