Metamath Proof Explorer


Theorem receu

Description: Existential uniqueness of reciprocals. Theorem I.8 of Apostol p. 18. (Contributed by NM, 29-Jan-1995) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Assertion receu A B B 0 ∃! x B x = A

Proof

Step Hyp Ref Expression
1 recex B B 0 y B y = 1
2 1 3adant1 A B B 0 y B y = 1
3 simprl A B y B y = 1 y
4 simpll A B y B y = 1 A
5 3 4 mulcld A B y B y = 1 y A
6 oveq1 B y = 1 B y A = 1 A
7 6 ad2antll A B y B y = 1 B y A = 1 A
8 simplr A B y B y = 1 B
9 8 3 4 mulassd A B y B y = 1 B y A = B y A
10 4 mulid2d A B y B y = 1 1 A = A
11 7 9 10 3eqtr3d A B y B y = 1 B y A = A
12 oveq2 x = y A B x = B y A
13 12 eqeq1d x = y A B x = A B y A = A
14 13 rspcev y A B y A = A x B x = A
15 5 11 14 syl2anc A B y B y = 1 x B x = A
16 15 rexlimdvaa A B y B y = 1 x B x = A
17 16 3adant3 A B B 0 y B y = 1 x B x = A
18 2 17 mpd A B B 0 x B x = A
19 eqtr3 B x = A B y = A B x = B y
20 mulcan x y B B 0 B x = B y x = y
21 19 20 syl5ib x y B B 0 B x = A B y = A x = y
22 21 3expa x y B B 0 B x = A B y = A x = y
23 22 expcom B B 0 x y B x = A B y = A x = y
24 23 3adant1 A B B 0 x y B x = A B y = A x = y
25 24 ralrimivv A B B 0 x y B x = A B y = A x = y
26 oveq2 x = y B x = B y
27 26 eqeq1d x = y B x = A B y = A
28 27 reu4 ∃! x B x = A x B x = A x y B x = A B y = A x = y
29 18 25 28 sylanbrc A B B 0 ∃! x B x = A