Metamath Proof Explorer


Theorem recexsr

Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion recexsr A 𝑹 A 0 𝑹 x 𝑹 A 𝑹 x = 1 𝑹

Proof

Step Hyp Ref Expression
1 sqgt0sr A 𝑹 A 0 𝑹 0 𝑹 < 𝑹 A 𝑹 A
2 mulclsr A 𝑹 y 𝑹 A 𝑹 y 𝑹
3 mulasssr A 𝑹 A 𝑹 y = A 𝑹 A 𝑹 y
4 3 eqeq1i A 𝑹 A 𝑹 y = 1 𝑹 A 𝑹 A 𝑹 y = 1 𝑹
5 oveq2 x = A 𝑹 y A 𝑹 x = A 𝑹 A 𝑹 y
6 5 eqeq1d x = A 𝑹 y A 𝑹 x = 1 𝑹 A 𝑹 A 𝑹 y = 1 𝑹
7 6 rspcev A 𝑹 y 𝑹 A 𝑹 A 𝑹 y = 1 𝑹 x 𝑹 A 𝑹 x = 1 𝑹
8 4 7 sylan2b A 𝑹 y 𝑹 A 𝑹 A 𝑹 y = 1 𝑹 x 𝑹 A 𝑹 x = 1 𝑹
9 2 8 sylan A 𝑹 y 𝑹 A 𝑹 A 𝑹 y = 1 𝑹 x 𝑹 A 𝑹 x = 1 𝑹
10 9 rexlimdva2 A 𝑹 y 𝑹 A 𝑹 A 𝑹 y = 1 𝑹 x 𝑹 A 𝑹 x = 1 𝑹
11 recexsrlem 0 𝑹 < 𝑹 A 𝑹 A y 𝑹 A 𝑹 A 𝑹 y = 1 𝑹
12 10 11 impel A 𝑹 0 𝑹 < 𝑹 A 𝑹 A x 𝑹 A 𝑹 x = 1 𝑹
13 1 12 syldan A 𝑹 A 0 𝑹 x 𝑹 A 𝑹 x = 1 𝑹