Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
ax-icn |
|
3 |
|
mulcl |
|
4 |
2 3
|
mpan |
|
5 |
4
|
adantl |
|
6 |
|
subcl |
|
7 |
4 6
|
sylan2 |
|
8 |
1 5 7
|
adddird |
|
9 |
1 1 5
|
subdid |
|
10 |
5 1 5
|
subdid |
|
11 |
|
mulcom |
|
12 |
4 11
|
sylan2 |
|
13 |
|
ixi |
|
14 |
13
|
oveq1i |
|
15 |
|
mulcl |
|
16 |
15
|
mulm1d |
|
17 |
14 16
|
eqtr2id |
|
18 |
|
mul4 |
|
19 |
2 2 18
|
mpanl12 |
|
20 |
17 19
|
eqtrd |
|
21 |
20
|
anidms |
|
22 |
21
|
adantl |
|
23 |
12 22
|
oveq12d |
|
24 |
10 23
|
eqtr4d |
|
25 |
9 24
|
oveq12d |
|
26 |
|
mulcl |
|
27 |
26
|
anidms |
|
28 |
27
|
adantr |
|
29 |
|
mulcl |
|
30 |
4 29
|
sylan2 |
|
31 |
15
|
negcld |
|
32 |
31
|
anidms |
|
33 |
32
|
adantl |
|
34 |
28 30 33
|
npncand |
|
35 |
15
|
anidms |
|
36 |
|
subneg |
|
37 |
27 35 36
|
syl2an |
|
38 |
34 37
|
eqtrd |
|
39 |
8 25 38
|
3eqtrd |
|