Metamath Proof Explorer


Theorem recgt0

Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 25-Aug-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion recgt0 A 0 < A 0 < 1 A

Proof

Step Hyp Ref Expression
1 simpl A 0 < A A
2 1 recnd A 0 < A A
3 gt0ne0 A 0 < A A 0
4 2 3 recne0d A 0 < A 1 A 0
5 4 necomd A 0 < A 0 1 A
6 5 neneqd A 0 < A ¬ 0 = 1 A
7 0lt1 0 < 1
8 0re 0
9 1re 1
10 8 9 ltnsymi 0 < 1 ¬ 1 < 0
11 7 10 ax-mp ¬ 1 < 0
12 simpll A 0 < A 1 A < 0 A
13 3 adantr A 0 < A 1 A < 0 A 0
14 12 13 rereccld A 0 < A 1 A < 0 1 A
15 14 renegcld A 0 < A 1 A < 0 1 A
16 simpr A 0 < A 1 A < 0 1 A < 0
17 1 3 rereccld A 0 < A 1 A
18 17 adantr A 0 < A 1 A < 0 1 A
19 18 lt0neg1d A 0 < A 1 A < 0 1 A < 0 0 < 1 A
20 16 19 mpbid A 0 < A 1 A < 0 0 < 1 A
21 simplr A 0 < A 1 A < 0 0 < A
22 15 12 20 21 mulgt0d A 0 < A 1 A < 0 0 < 1 A A
23 2 adantr A 0 < A 1 A < 0 A
24 23 13 reccld A 0 < A 1 A < 0 1 A
25 24 23 mulneg1d A 0 < A 1 A < 0 1 A A = 1 A A
26 23 13 recid2d A 0 < A 1 A < 0 1 A A = 1
27 26 negeqd A 0 < A 1 A < 0 1 A A = 1
28 25 27 eqtrd A 0 < A 1 A < 0 1 A A = 1
29 22 28 breqtrd A 0 < A 1 A < 0 0 < 1
30 1red A 0 < A 1 A < 0 1
31 30 lt0neg1d A 0 < A 1 A < 0 1 < 0 0 < 1
32 29 31 mpbird A 0 < A 1 A < 0 1 < 0
33 32 ex A 0 < A 1 A < 0 1 < 0
34 11 33 mtoi A 0 < A ¬ 1 A < 0
35 ioran ¬ 0 = 1 A 1 A < 0 ¬ 0 = 1 A ¬ 1 A < 0
36 6 34 35 sylanbrc A 0 < A ¬ 0 = 1 A 1 A < 0
37 axlttri 0 1 A 0 < 1 A ¬ 0 = 1 A 1 A < 0
38 8 17 37 sylancr A 0 < A 0 < 1 A ¬ 0 = 1 A 1 A < 0
39 36 38 mpbird A 0 < A 0 < 1 A