Metamath Proof Explorer


Theorem recgt0ii

Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses ltplus1.1 A
recgt0i.2 0 < A
Assertion recgt0ii 0 < 1 A

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 recgt0i.2 0 < A
3 ax-1cn 1
4 1 recni A
5 ax-1ne0 1 0
6 1 2 gt0ne0ii A 0
7 3 4 5 6 divne0i 1 A 0
8 7 nesymi ¬ 0 = 1 A
9 0lt1 0 < 1
10 0re 0
11 1re 1
12 10 11 ltnsymi 0 < 1 ¬ 1 < 0
13 9 12 ax-mp ¬ 1 < 0
14 1 6 rereccli 1 A
15 14 renegcli 1 A
16 15 1 mulgt0i 0 < 1 A 0 < A 0 < 1 A A
17 2 16 mpan2 0 < 1 A 0 < 1 A A
18 14 recni 1 A
19 18 4 mulneg1i 1 A A = 1 A A
20 4 6 recidi A 1 A = 1
21 4 18 20 mulcomli 1 A A = 1
22 21 negeqi 1 A A = 1
23 19 22 eqtri 1 A A = 1
24 17 23 breqtrdi 0 < 1 A 0 < 1
25 lt0neg1 1 A 1 A < 0 0 < 1 A
26 14 25 ax-mp 1 A < 0 0 < 1 A
27 lt0neg1 1 1 < 0 0 < 1
28 11 27 ax-mp 1 < 0 0 < 1
29 24 26 28 3imtr4i 1 A < 0 1 < 0
30 13 29 mto ¬ 1 A < 0
31 8 30 pm3.2ni ¬ 0 = 1 A 1 A < 0
32 axlttri 0 1 A 0 < 1 A ¬ 0 = 1 A 1 A < 0
33 10 14 32 mp2an 0 < 1 A ¬ 0 = 1 A 1 A < 0
34 31 33 mpbir 0 < 1 A