Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Real and imaginary parts; conjugate
recj
Next ⟩
reneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
recj
Description:
Real part of a complex conjugate.
(Contributed by
Mario Carneiro
, 14-Jul-2014)
Ref
Expression
Assertion
recj
⊢
A
∈
ℂ
→
ℜ
⁡
A
‾
=
ℜ
⁡
A
Proof
Step
Hyp
Ref
Expression
1
recl
⊢
A
∈
ℂ
→
ℜ
⁡
A
∈
ℝ
2
1
recnd
⊢
A
∈
ℂ
→
ℜ
⁡
A
∈
ℂ
3
ax-icn
⊢
i
∈
ℂ
4
imcl
⊢
A
∈
ℂ
→
ℑ
⁡
A
∈
ℝ
5
4
recnd
⊢
A
∈
ℂ
→
ℑ
⁡
A
∈
ℂ
6
mulcl
⊢
i
∈
ℂ
∧
ℑ
⁡
A
∈
ℂ
→
i
⁢
ℑ
⁡
A
∈
ℂ
7
3
5
6
sylancr
⊢
A
∈
ℂ
→
i
⁢
ℑ
⁡
A
∈
ℂ
8
2
7
negsubd
⊢
A
∈
ℂ
→
ℜ
⁡
A
+
−
i
⁢
ℑ
⁡
A
=
ℜ
⁡
A
−
i
⁢
ℑ
⁡
A
9
mulneg2
⊢
i
∈
ℂ
∧
ℑ
⁡
A
∈
ℂ
→
i
⁢
−
ℑ
⁡
A
=
−
i
⁢
ℑ
⁡
A
10
3
5
9
sylancr
⊢
A
∈
ℂ
→
i
⁢
−
ℑ
⁡
A
=
−
i
⁢
ℑ
⁡
A
11
10
oveq2d
⊢
A
∈
ℂ
→
ℜ
⁡
A
+
i
⁢
−
ℑ
⁡
A
=
ℜ
⁡
A
+
−
i
⁢
ℑ
⁡
A
12
remim
⊢
A
∈
ℂ
→
A
‾
=
ℜ
⁡
A
−
i
⁢
ℑ
⁡
A
13
8
11
12
3eqtr4rd
⊢
A
∈
ℂ
→
A
‾
=
ℜ
⁡
A
+
i
⁢
−
ℑ
⁡
A
14
13
fveq2d
⊢
A
∈
ℂ
→
ℜ
⁡
A
‾
=
ℜ
⁡
ℜ
⁡
A
+
i
⁢
−
ℑ
⁡
A
15
4
renegcld
⊢
A
∈
ℂ
→
−
ℑ
⁡
A
∈
ℝ
16
crre
⊢
ℜ
⁡
A
∈
ℝ
∧
−
ℑ
⁡
A
∈
ℝ
→
ℜ
⁡
ℜ
⁡
A
+
i
⁢
−
ℑ
⁡
A
=
ℜ
⁡
A
17
1
15
16
syl2anc
⊢
A
∈
ℂ
→
ℜ
⁡
ℜ
⁡
A
+
i
⁢
−
ℑ
⁡
A
=
ℜ
⁡
A
18
14
17
eqtrd
⊢
A
∈
ℂ
→
ℜ
⁡
A
‾
=
ℜ
⁡
A