Step |
Hyp |
Ref |
Expression |
1 |
|
recld2.1 |
|
2 |
|
difss |
|
3 |
|
eldifi |
|
4 |
3
|
imcld |
|
5 |
4
|
recnd |
|
6 |
|
eldifn |
|
7 |
|
reim0b |
|
8 |
3 7
|
syl |
|
9 |
8
|
necon3bbid |
|
10 |
6 9
|
mpbid |
|
11 |
5 10
|
absrpcld |
|
12 |
|
cnxmet |
|
13 |
5
|
abscld |
|
14 |
13
|
rexrd |
|
15 |
|
elbl |
|
16 |
12 3 14 15
|
mp3an2i |
|
17 |
|
simprl |
|
18 |
3
|
adantr |
|
19 |
|
simpr |
|
20 |
19
|
recnd |
|
21 |
|
eqid |
|
22 |
21
|
cnmetdval |
|
23 |
18 20 22
|
syl2anc |
|
24 |
5
|
adantr |
|
25 |
24
|
abscld |
|
26 |
18 20
|
subcld |
|
27 |
26
|
abscld |
|
28 |
18 20
|
imsubd |
|
29 |
|
reim0 |
|
30 |
29
|
adantl |
|
31 |
30
|
oveq2d |
|
32 |
24
|
subid1d |
|
33 |
28 31 32
|
3eqtrd |
|
34 |
33
|
fveq2d |
|
35 |
|
absimle |
|
36 |
26 35
|
syl |
|
37 |
34 36
|
eqbrtrrd |
|
38 |
25 27 37
|
lensymd |
|
39 |
23 38
|
eqnbrtrd |
|
40 |
39
|
ex |
|
41 |
40
|
con2d |
|
42 |
41
|
adantr |
|
43 |
42
|
impr |
|
44 |
17 43
|
eldifd |
|
45 |
44
|
ex |
|
46 |
16 45
|
sylbid |
|
47 |
46
|
ssrdv |
|
48 |
|
oveq2 |
|
49 |
48
|
sseq1d |
|
50 |
49
|
rspcev |
|
51 |
11 47 50
|
syl2anc |
|
52 |
51
|
rgen |
|
53 |
1
|
cnfldtopn |
|
54 |
53
|
elmopn2 |
|
55 |
12 54
|
ax-mp |
|
56 |
2 52 55
|
mpbir2an |
|
57 |
1
|
cnfldtop |
|
58 |
|
ax-resscn |
|
59 |
53
|
mopnuni |
|
60 |
12 59
|
ax-mp |
|
61 |
60
|
iscld2 |
|
62 |
57 58 61
|
mp2an |
|
63 |
56 62
|
mpbir |
|