Metamath Proof Explorer


Theorem reclem2pr

Description: Lemma for Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis reclempr.1 B = x | y x < 𝑸 y ¬ * 𝑸 y A
Assertion reclem2pr A 𝑷 B 𝑷

Proof

Step Hyp Ref Expression
1 reclempr.1 B = x | y x < 𝑸 y ¬ * 𝑸 y A
2 prpssnq A 𝑷 A 𝑸
3 pssnel A 𝑸 x x 𝑸 ¬ x A
4 recclnq x 𝑸 * 𝑸 x 𝑸
5 nsmallnq * 𝑸 x 𝑸 z z < 𝑸 * 𝑸 x
6 4 5 syl x 𝑸 z z < 𝑸 * 𝑸 x
7 6 adantr x 𝑸 ¬ x A z z < 𝑸 * 𝑸 x
8 recrecnq x 𝑸 * 𝑸 * 𝑸 x = x
9 8 eleq1d x 𝑸 * 𝑸 * 𝑸 x A x A
10 9 notbid x 𝑸 ¬ * 𝑸 * 𝑸 x A ¬ x A
11 10 anbi2d x 𝑸 z < 𝑸 * 𝑸 x ¬ * 𝑸 * 𝑸 x A z < 𝑸 * 𝑸 x ¬ x A
12 fvex * 𝑸 x V
13 breq2 y = * 𝑸 x z < 𝑸 y z < 𝑸 * 𝑸 x
14 fveq2 y = * 𝑸 x * 𝑸 y = * 𝑸 * 𝑸 x
15 14 eleq1d y = * 𝑸 x * 𝑸 y A * 𝑸 * 𝑸 x A
16 15 notbid y = * 𝑸 x ¬ * 𝑸 y A ¬ * 𝑸 * 𝑸 x A
17 13 16 anbi12d y = * 𝑸 x z < 𝑸 y ¬ * 𝑸 y A z < 𝑸 * 𝑸 x ¬ * 𝑸 * 𝑸 x A
18 12 17 spcev z < 𝑸 * 𝑸 x ¬ * 𝑸 * 𝑸 x A y z < 𝑸 y ¬ * 𝑸 y A
19 11 18 syl6bir x 𝑸 z < 𝑸 * 𝑸 x ¬ x A y z < 𝑸 y ¬ * 𝑸 y A
20 vex z V
21 breq1 x = z x < 𝑸 y z < 𝑸 y
22 21 anbi1d x = z x < 𝑸 y ¬ * 𝑸 y A z < 𝑸 y ¬ * 𝑸 y A
23 22 exbidv x = z y x < 𝑸 y ¬ * 𝑸 y A y z < 𝑸 y ¬ * 𝑸 y A
24 20 23 1 elab2 z B y z < 𝑸 y ¬ * 𝑸 y A
25 19 24 syl6ibr x 𝑸 z < 𝑸 * 𝑸 x ¬ x A z B
26 25 expcomd x 𝑸 ¬ x A z < 𝑸 * 𝑸 x z B
27 26 imp x 𝑸 ¬ x A z < 𝑸 * 𝑸 x z B
28 27 eximdv x 𝑸 ¬ x A z z < 𝑸 * 𝑸 x z z B
29 7 28 mpd x 𝑸 ¬ x A z z B
30 n0 B z z B
31 29 30 sylibr x 𝑸 ¬ x A B
32 31 exlimiv x x 𝑸 ¬ x A B
33 2 3 32 3syl A 𝑷 B
34 0pss B B
35 33 34 sylibr A 𝑷 B
36 prn0 A 𝑷 A
37 elprnq A 𝑷 z A z 𝑸
38 recrecnq z 𝑸 * 𝑸 * 𝑸 z = z
39 38 eleq1d z 𝑸 * 𝑸 * 𝑸 z A z A
40 39 anbi2d z 𝑸 A 𝑷 * 𝑸 * 𝑸 z A A 𝑷 z A
41 37 40 syl A 𝑷 z A A 𝑷 * 𝑸 * 𝑸 z A A 𝑷 z A
42 fvex * 𝑸 z V
43 fveq2 x = * 𝑸 z * 𝑸 x = * 𝑸 * 𝑸 z
44 43 eleq1d x = * 𝑸 z * 𝑸 x A * 𝑸 * 𝑸 z A
45 44 anbi2d x = * 𝑸 z A 𝑷 * 𝑸 x A A 𝑷 * 𝑸 * 𝑸 z A
46 42 45 spcev A 𝑷 * 𝑸 * 𝑸 z A x A 𝑷 * 𝑸 x A
47 41 46 syl6bir A 𝑷 z A A 𝑷 z A x A 𝑷 * 𝑸 x A
48 47 pm2.43i A 𝑷 z A x A 𝑷 * 𝑸 x A
49 elprnq A 𝑷 * 𝑸 x A * 𝑸 x 𝑸
50 dmrecnq dom * 𝑸 = 𝑸
51 0nnq ¬ 𝑸
52 50 51 ndmfvrcl * 𝑸 x 𝑸 x 𝑸
53 49 52 syl A 𝑷 * 𝑸 x A x 𝑸
54 ltrnq x < 𝑸 y * 𝑸 y < 𝑸 * 𝑸 x
55 prcdnq A 𝑷 * 𝑸 x A * 𝑸 y < 𝑸 * 𝑸 x * 𝑸 y A
56 54 55 syl5bi A 𝑷 * 𝑸 x A x < 𝑸 y * 𝑸 y A
57 56 alrimiv A 𝑷 * 𝑸 x A y x < 𝑸 y * 𝑸 y A
58 1 abeq2i x B y x < 𝑸 y ¬ * 𝑸 y A
59 exanali y x < 𝑸 y ¬ * 𝑸 y A ¬ y x < 𝑸 y * 𝑸 y A
60 58 59 bitri x B ¬ y x < 𝑸 y * 𝑸 y A
61 60 con2bii y x < 𝑸 y * 𝑸 y A ¬ x B
62 57 61 sylib A 𝑷 * 𝑸 x A ¬ x B
63 53 62 jca A 𝑷 * 𝑸 x A x 𝑸 ¬ x B
64 63 eximi x A 𝑷 * 𝑸 x A x x 𝑸 ¬ x B
65 48 64 syl A 𝑷 z A x x 𝑸 ¬ x B
66 65 ex A 𝑷 z A x x 𝑸 ¬ x B
67 66 exlimdv A 𝑷 z z A x x 𝑸 ¬ x B
68 n0 A z z A
69 nss ¬ 𝑸 B x x 𝑸 ¬ x B
70 67 68 69 3imtr4g A 𝑷 A ¬ 𝑸 B
71 36 70 mpd A 𝑷 ¬ 𝑸 B
72 ltrelnq < 𝑸 𝑸 × 𝑸
73 72 brel x < 𝑸 y x 𝑸 y 𝑸
74 73 simpld x < 𝑸 y x 𝑸
75 74 adantr x < 𝑸 y ¬ * 𝑸 y A x 𝑸
76 75 exlimiv y x < 𝑸 y ¬ * 𝑸 y A x 𝑸
77 58 76 sylbi x B x 𝑸
78 77 ssriv B 𝑸
79 71 78 jctil A 𝑷 B 𝑸 ¬ 𝑸 B
80 dfpss3 B 𝑸 B 𝑸 ¬ 𝑸 B
81 79 80 sylibr A 𝑷 B 𝑸
82 35 81 jca A 𝑷 B B 𝑸
83 ltsonq < 𝑸 Or 𝑸
84 83 72 sotri z < 𝑸 x x < 𝑸 y z < 𝑸 y
85 84 ex z < 𝑸 x x < 𝑸 y z < 𝑸 y
86 85 anim1d z < 𝑸 x x < 𝑸 y ¬ * 𝑸 y A z < 𝑸 y ¬ * 𝑸 y A
87 86 eximdv z < 𝑸 x y x < 𝑸 y ¬ * 𝑸 y A y z < 𝑸 y ¬ * 𝑸 y A
88 87 58 24 3imtr4g z < 𝑸 x x B z B
89 88 com12 x B z < 𝑸 x z B
90 89 alrimiv x B z z < 𝑸 x z B
91 nfe1 y y x < 𝑸 y ¬ * 𝑸 y A
92 91 nfab _ y x | y x < 𝑸 y ¬ * 𝑸 y A
93 1 92 nfcxfr _ y B
94 nfv y x < 𝑸 z
95 93 94 nfrex y z B x < 𝑸 z
96 19.8a z < 𝑸 y ¬ * 𝑸 y A y z < 𝑸 y ¬ * 𝑸 y A
97 96 24 sylibr z < 𝑸 y ¬ * 𝑸 y A z B
98 97 adantll x < 𝑸 z z < 𝑸 y ¬ * 𝑸 y A z B
99 simpll x < 𝑸 z z < 𝑸 y ¬ * 𝑸 y A x < 𝑸 z
100 98 99 jca x < 𝑸 z z < 𝑸 y ¬ * 𝑸 y A z B x < 𝑸 z
101 100 expcom ¬ * 𝑸 y A x < 𝑸 z z < 𝑸 y z B x < 𝑸 z
102 101 eximdv ¬ * 𝑸 y A z x < 𝑸 z z < 𝑸 y z z B x < 𝑸 z
103 ltbtwnnq x < 𝑸 y z x < 𝑸 z z < 𝑸 y
104 df-rex z B x < 𝑸 z z z B x < 𝑸 z
105 102 103 104 3imtr4g ¬ * 𝑸 y A x < 𝑸 y z B x < 𝑸 z
106 105 impcom x < 𝑸 y ¬ * 𝑸 y A z B x < 𝑸 z
107 95 106 exlimi y x < 𝑸 y ¬ * 𝑸 y A z B x < 𝑸 z
108 58 107 sylbi x B z B x < 𝑸 z
109 90 108 jca x B z z < 𝑸 x z B z B x < 𝑸 z
110 109 rgen x B z z < 𝑸 x z B z B x < 𝑸 z
111 elnp B 𝑷 B B 𝑸 x B z z < 𝑸 x z B z B x < 𝑸 z
112 82 110 111 sylanblrc A 𝑷 B 𝑷