Metamath Proof Explorer


Theorem reclimc

Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses reclimc.f F = x A B
reclimc.g G = x A 1 B
reclimc.b φ x A B 0
reclimc.c φ C F lim D
reclimc.cne0 φ C 0
Assertion reclimc φ 1 C G lim D

Proof

Step Hyp Ref Expression
1 reclimc.f F = x A B
2 reclimc.g G = x A 1 B
3 reclimc.b φ x A B 0
4 reclimc.c φ C F lim D
5 reclimc.cne0 φ C 0
6 eqid x A C B = x A C B
7 eqid x A B C = x A B C
8 eqid x A C B B C = x A C B B C
9 limccl F lim D
10 9 4 sselid φ C
11 10 adantr φ x A C
12 3 eldifad φ x A B
13 11 12 subcld φ x A C B
14 12 11 mulcld φ x A B C
15 eldifsni B 0 B 0
16 3 15 syl φ x A B 0
17 5 adantr φ x A C 0
18 12 11 16 17 mulne0d φ x A B C 0
19 18 neneqd φ x A ¬ B C = 0
20 elsng B C B C 0 B C = 0
21 14 20 syl φ x A B C 0 B C = 0
22 19 21 mtbird φ x A ¬ B C 0
23 14 22 eldifd φ x A B C 0
24 eqid x A C = x A C
25 eqid x A B = x A B
26 eqid x A C + B = x A C + B
27 12 negcld φ x A B
28 1 12 4 limcmptdm φ A
29 limcrcl C F lim D F : dom F dom F D
30 4 29 syl φ F : dom F dom F D
31 30 simp3d φ D
32 24 28 10 31 constlimc φ C x A C lim D
33 1 25 12 4 neglimc φ C x A B lim D
34 24 25 26 11 27 32 33 addlimc φ C + C x A C + B lim D
35 10 negidd φ C + C = 0
36 11 12 negsubd φ x A C + B = C B
37 36 mpteq2dva φ x A C + B = x A C B
38 37 oveq1d φ x A C + B lim D = x A C B lim D
39 34 35 38 3eltr3d φ 0 x A C B lim D
40 1 24 7 12 11 4 32 mullimc φ C C x A B C lim D
41 10 10 5 5 mulne0d φ C C 0
42 6 7 8 13 23 39 40 41 0ellimcdiv φ 0 x A C B B C lim D
43 1cnd φ x A 1
44 43 12 43 11 16 17 divsubdivd φ x A 1 B 1 C = 1 C 1 B B C
45 11 mulid2d φ x A 1 C = C
46 12 mulid2d φ x A 1 B = B
47 45 46 oveq12d φ x A 1 C 1 B = C B
48 47 oveq1d φ x A 1 C 1 B B C = C B B C
49 44 48 eqtr2d φ x A C B B C = 1 B 1 C
50 49 mpteq2dva φ x A C B B C = x A 1 B 1 C
51 50 oveq1d φ x A C B B C lim D = x A 1 B 1 C lim D
52 42 51 eleqtrd φ 0 x A 1 B 1 C lim D
53 eqid x A 1 B 1 C = x A 1 B 1 C
54 12 16 reccld φ x A 1 B
55 10 5 reccld φ 1 C
56 2 53 28 54 31 55 ellimcabssub0 φ 1 C G lim D 0 x A 1 B 1 C lim D
57 52 56 mpbird φ 1 C G lim D