Metamath Proof Explorer


Theorem reclt0

Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses reclt0.1 φ A
reclt0.2 φ A 0
Assertion reclt0 φ A < 0 1 A < 0

Proof

Step Hyp Ref Expression
1 reclt0.1 φ A
2 reclt0.2 φ A 0
3 1 adantr φ A < 0 A
4 simpr φ A < 0 A < 0
5 3 4 reclt0d φ A < 0 1 A < 0
6 5 ex φ A < 0 1 A < 0
7 0red φ ¬ A < 0 0
8 1 adantr φ ¬ A < 0 A
9 2 necomd φ 0 A
10 9 adantr φ ¬ A < 0 0 A
11 simpr φ ¬ A < 0 ¬ A < 0
12 7 8 10 11 lttri5d φ ¬ A < 0 0 < A
13 0red φ 0 < A 0
14 1 2 rereccld φ 1 A
15 14 adantr φ 0 < A 1 A
16 1 adantr φ 0 < A A
17 simpr φ 0 < A 0 < A
18 16 17 recgt0d φ 0 < A 0 < 1 A
19 13 15 18 ltled φ 0 < A 0 1 A
20 13 15 lenltd φ 0 < A 0 1 A ¬ 1 A < 0
21 19 20 mpbid φ 0 < A ¬ 1 A < 0
22 12 21 syldan φ ¬ A < 0 ¬ 1 A < 0
23 22 ex φ ¬ A < 0 ¬ 1 A < 0
24 23 con4d φ 1 A < 0 A < 0
25 24 imp φ 1 A < 0 A < 0
26 25 ex φ 1 A < 0 A < 0
27 6 26 impbid φ A < 0 1 A < 0