Metamath Proof Explorer


Theorem reclt0d

Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses reclt0d.1 φ A
reclt0d.2 φ A < 0
Assertion reclt0d φ 1 A < 0

Proof

Step Hyp Ref Expression
1 reclt0d.1 φ A
2 reclt0d.2 φ A < 0
3 0lt1 0 < 1
4 3 a1i φ ¬ 1 A < 0 0 < 1
5 simpr φ ¬ 1 A < 0 ¬ 1 A < 0
6 0red φ ¬ 1 A < 0 0
7 1red φ 1
8 2 lt0ne0d φ A 0
9 7 1 8 redivcld φ 1 A
10 9 adantr φ ¬ 1 A < 0 1 A
11 6 10 lenltd φ ¬ 1 A < 0 0 1 A ¬ 1 A < 0
12 5 11 mpbird φ ¬ 1 A < 0 0 1 A
13 1 recnd φ A
14 13 8 recidd φ A 1 A = 1
15 14 eqcomd φ 1 = A 1 A
16 15 adantr φ 0 1 A 1 = A 1 A
17 0red φ 0
18 1 17 2 ltled φ A 0
19 18 adantr φ 0 1 A A 0
20 simpr φ 0 1 A 0 1 A
21 19 20 jca φ 0 1 A A 0 0 1 A
22 21 orcd φ 0 1 A A 0 0 1 A 0 A 1 A 0
23 mulle0b A 1 A A 1 A 0 A 0 0 1 A 0 A 1 A 0
24 1 9 23 syl2anc φ A 1 A 0 A 0 0 1 A 0 A 1 A 0
25 24 adantr φ 0 1 A A 1 A 0 A 0 0 1 A 0 A 1 A 0
26 22 25 mpbird φ 0 1 A A 1 A 0
27 16 26 eqbrtrd φ 0 1 A 1 0
28 7 adantr φ 0 1 A 1
29 0red φ 0 1 A 0
30 28 29 lenltd φ 0 1 A 1 0 ¬ 0 < 1
31 27 30 mpbid φ 0 1 A ¬ 0 < 1
32 12 31 syldan φ ¬ 1 A < 0 ¬ 0 < 1
33 4 32 condan φ 1 A < 0