Metamath Proof Explorer


Theorem recmet

Description: The real numbers are a complete metric space. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion recmet abs 2 CMet

Proof

Step Hyp Ref Expression
1 eqid TopOpen fld = TopOpen fld
2 1 recld2 Clsd TopOpen fld
3 eqid abs = abs
4 3 cncmet abs CMet
5 1 cnfldtopn TopOpen fld = MetOpen abs
6 5 cmetss abs CMet abs 2 CMet Clsd TopOpen fld
7 4 6 ax-mp abs 2 CMet Clsd TopOpen fld
8 2 7 mpbir abs 2 CMet