Metamath Proof Explorer


Theorem recnnltrp

Description: N is a natural number large enough that its reciprocal is smaller than the given positive E . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis recnnltrp.1 N = 1 E + 1
Assertion recnnltrp E + N 1 N < E

Proof

Step Hyp Ref Expression
1 recnnltrp.1 N = 1 E + 1
2 rpreccl E + 1 E +
3 2 rpred E + 1 E
4 2 rpge0d E + 0 1 E
5 flge0nn0 1 E 0 1 E 1 E 0
6 3 4 5 syl2anc E + 1 E 0
7 nn0p1nn 1 E 0 1 E + 1
8 6 7 syl E + 1 E + 1
9 1 8 eqeltrid E + N
10 flltp1 1 E 1 E < 1 E + 1
11 3 10 syl E + 1 E < 1 E + 1
12 11 1 breqtrrdi E + 1 E < N
13 9 nnrpd E + N +
14 2 13 ltrecd E + 1 E < N 1 N < 1 1 E
15 12 14 mpbid E + 1 N < 1 1 E
16 rpcn E + E
17 rpne0 E + E 0
18 16 17 recrecd E + 1 1 E = E
19 15 18 breqtrd E + 1 N < E
20 9 19 jca E + N 1 N < E