Database
BASIC REAL AND COMPLEX ANALYSIS
Derivatives
Real and complex differentiation
Derivatives of functions of one complex or real variable
recnperf
Next ⟩
dvfg
Metamath Proof Explorer
Ascii
Unicode
Theorem
recnperf
Description:
Both
RR
and
CC
are perfect subsets of
CC
.
(Contributed by
Mario Carneiro
, 28-Dec-2016)
Ref
Expression
Hypothesis
recnperf.k
⊢
K
=
TopOpen
⁡
ℂ
fld
Assertion
recnperf
⊢
S
∈
ℝ
ℂ
→
K
↾
𝑡
S
∈
Perf
Proof
Step
Hyp
Ref
Expression
1
recnperf.k
⊢
K
=
TopOpen
⁡
ℂ
fld
2
elpri
⊢
S
∈
ℝ
ℂ
→
S
=
ℝ
∨
S
=
ℂ
3
oveq2
⊢
S
=
ℝ
→
K
↾
𝑡
S
=
K
↾
𝑡
ℝ
4
1
reperf
⊢
K
↾
𝑡
ℝ
∈
Perf
5
3
4
eqeltrdi
⊢
S
=
ℝ
→
K
↾
𝑡
S
∈
Perf
6
oveq2
⊢
S
=
ℂ
→
K
↾
𝑡
S
=
K
↾
𝑡
ℂ
7
1
cnfldtopon
⊢
K
∈
TopOn
⁡
ℂ
8
7
toponunii
⊢
ℂ
=
⋃
K
9
8
restid
⊢
K
∈
TopOn
⁡
ℂ
→
K
↾
𝑡
ℂ
=
K
10
7
9
ax-mp
⊢
K
↾
𝑡
ℂ
=
K
11
1
cnperf
⊢
K
∈
Perf
12
10
11
eqeltri
⊢
K
↾
𝑡
ℂ
∈
Perf
13
6
12
eqeltrdi
⊢
S
=
ℂ
→
K
↾
𝑡
S
∈
Perf
14
5
13
jaoi
⊢
S
=
ℝ
∨
S
=
ℂ
→
K
↾
𝑡
S
∈
Perf
15
2
14
syl
⊢
S
∈
ℝ
ℂ
→
K
↾
𝑡
S
∈
Perf