Metamath Proof Explorer


Theorem recnperf

Description: Both RR and CC are perfect subsets of CC . (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypothesis recnperf.k K = TopOpen fld
Assertion recnperf S K 𝑡 S Perf

Proof

Step Hyp Ref Expression
1 recnperf.k K = TopOpen fld
2 elpri S S = S =
3 oveq2 S = K 𝑡 S = K 𝑡
4 1 reperf K 𝑡 Perf
5 3 4 eqeltrdi S = K 𝑡 S Perf
6 oveq2 S = K 𝑡 S = K 𝑡
7 1 cnfldtopon K TopOn
8 7 toponunii = K
9 8 restid K TopOn K 𝑡 = K
10 7 9 ax-mp K 𝑡 = K
11 1 cnperf K Perf
12 10 11 eqeltri K 𝑡 Perf
13 6 12 eqeltrdi S = K 𝑡 S Perf
14 5 13 jaoi S = S = K 𝑡 S Perf
15 2 14 syl S K 𝑡 S Perf