Metamath Proof Explorer


Theorem recnz

Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion recnz A 1 < A ¬ 1 A

Proof

Step Hyp Ref Expression
1 recgt1i A 1 < A 0 < 1 A 1 A < 1
2 1 simprd A 1 < A 1 A < 1
3 1 simpld A 1 < A 0 < 1 A
4 zgt0ge1 1 A 0 < 1 A 1 1 A
5 3 4 syl5ibcom A 1 < A 1 A 1 1 A
6 1re 1
7 0lt1 0 < 1
8 0re 0
9 lttr 0 1 A 0 < 1 1 < A 0 < A
10 8 6 9 mp3an12 A 0 < 1 1 < A 0 < A
11 7 10 mpani A 1 < A 0 < A
12 11 imdistani A 1 < A A 0 < A
13 gt0ne0 A 0 < A A 0
14 12 13 syl A 1 < A A 0
15 rereccl A A 0 1 A
16 14 15 syldan A 1 < A 1 A
17 lenlt 1 1 A 1 1 A ¬ 1 A < 1
18 6 16 17 sylancr A 1 < A 1 1 A ¬ 1 A < 1
19 5 18 sylibd A 1 < A 1 A ¬ 1 A < 1
20 2 19 mt2d A 1 < A ¬ 1 A