Step |
Hyp |
Ref |
Expression |
1 |
|
reconnlem1 |
|
2 |
1
|
ralrimivva |
|
3 |
2
|
ex |
|
4 |
|
n0 |
|
5 |
|
n0 |
|
6 |
4 5
|
anbi12i |
|
7 |
|
exdistrv |
|
8 |
|
simplll |
|
9 |
|
simprll |
|
10 |
9
|
elin2d |
|
11 |
8 10
|
sseldd |
|
12 |
|
simprlr |
|
13 |
12
|
elin2d |
|
14 |
8 13
|
sseldd |
|
15 |
8
|
adantr |
|
16 |
|
simplrl |
|
17 |
16
|
ad2antrr |
|
18 |
|
simplrr |
|
19 |
18
|
ad2antrr |
|
20 |
|
simpllr |
|
21 |
9
|
adantr |
|
22 |
12
|
adantr |
|
23 |
|
simplrr |
|
24 |
|
simpr |
|
25 |
|
eqid |
|
26 |
15 17 19 20 21 22 23 24 25
|
reconnlem2 |
|
27 |
8
|
adantr |
|
28 |
18
|
ad2antrr |
|
29 |
16
|
ad2antrr |
|
30 |
|
simpllr |
|
31 |
12
|
adantr |
|
32 |
9
|
adantr |
|
33 |
|
incom |
|
34 |
|
simplrr |
|
35 |
33 34
|
eqsstrid |
|
36 |
|
simpr |
|
37 |
|
eqid |
|
38 |
27 28 29 30 31 32 35 36 37
|
reconnlem2 |
|
39 |
|
uncom |
|
40 |
39
|
sseq2i |
|
41 |
38 40
|
sylnib |
|
42 |
11 14 26 41
|
lecasei |
|
43 |
42
|
exp32 |
|
44 |
43
|
exlimdvv |
|
45 |
7 44
|
syl5bir |
|
46 |
6 45
|
syl5bi |
|
47 |
46
|
expd |
|
48 |
47
|
3impd |
|
49 |
48
|
ex |
|
50 |
49
|
ralrimdvva |
|
51 |
|
retopon |
|
52 |
|
connsub |
|
53 |
51 52
|
mpan |
|
54 |
50 53
|
sylibrd |
|
55 |
3 54
|
impbid |
|