Metamath Proof Explorer


Theorem recosf1o

Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Assertion recosf1o cos 0 π : 0 π 1-1 onto 1 1

Proof

Step Hyp Ref Expression
1 cosf cos :
2 ffn cos : cos Fn
3 1 2 ax-mp cos Fn
4 0re 0
5 pire π
6 iccssre 0 π 0 π
7 4 5 6 mp2an 0 π
8 ax-resscn
9 7 8 sstri 0 π
10 fnssres cos Fn 0 π cos 0 π Fn 0 π
11 3 9 10 mp2an cos 0 π Fn 0 π
12 fvres x 0 π cos 0 π x = cos x
13 7 sseli x 0 π x
14 cosbnd2 x cos x 1 1
15 13 14 syl x 0 π cos x 1 1
16 12 15 eqeltrd x 0 π cos 0 π x 1 1
17 16 rgen x 0 π cos 0 π x 1 1
18 ffnfv cos 0 π : 0 π 1 1 cos 0 π Fn 0 π x 0 π cos 0 π x 1 1
19 11 17 18 mpbir2an cos 0 π : 0 π 1 1
20 fvres y 0 π cos 0 π y = cos y
21 12 20 eqeqan12d x 0 π y 0 π cos 0 π x = cos 0 π y cos x = cos y
22 cos11 x 0 π y 0 π x = y cos x = cos y
23 22 biimprd x 0 π y 0 π cos x = cos y x = y
24 21 23 sylbid x 0 π y 0 π cos 0 π x = cos 0 π y x = y
25 24 rgen2 x 0 π y 0 π cos 0 π x = cos 0 π y x = y
26 dff13 cos 0 π : 0 π 1-1 1 1 cos 0 π : 0 π 1 1 x 0 π y 0 π cos 0 π x = cos 0 π y x = y
27 19 25 26 mpbir2an cos 0 π : 0 π 1-1 1 1
28 4 a1i x 1 1 0
29 5 a1i x 1 1 π
30 neg1rr 1
31 1re 1
32 30 31 elicc2i x 1 1 x 1 x x 1
33 32 simp1bi x 1 1 x
34 pipos 0 < π
35 34 a1i x 1 1 0 < π
36 9 a1i x 1 1 0 π
37 coscn cos : cn
38 37 a1i x 1 1 cos : cn
39 7 sseli z 0 π z
40 39 recoscld z 0 π cos z
41 40 adantl x 1 1 z 0 π cos z
42 cospi cos π = 1
43 32 simp2bi x 1 1 1 x
44 42 43 eqbrtrid x 1 1 cos π x
45 32 simp3bi x 1 1 x 1
46 cos0 cos 0 = 1
47 45 46 breqtrrdi x 1 1 x cos 0
48 44 47 jca x 1 1 cos π x x cos 0
49 28 29 33 35 36 38 41 48 ivthle2 x 1 1 y 0 π cos y = x
50 eqcom x = cos 0 π y cos 0 π y = x
51 20 eqeq1d y 0 π cos 0 π y = x cos y = x
52 50 51 syl5bb y 0 π x = cos 0 π y cos y = x
53 52 rexbiia y 0 π x = cos 0 π y y 0 π cos y = x
54 49 53 sylibr x 1 1 y 0 π x = cos 0 π y
55 54 rgen x 1 1 y 0 π x = cos 0 π y
56 dffo3 cos 0 π : 0 π onto 1 1 cos 0 π : 0 π 1 1 x 1 1 y 0 π x = cos 0 π y
57 19 55 56 mpbir2an cos 0 π : 0 π onto 1 1
58 df-f1o cos 0 π : 0 π 1-1 onto 1 1 cos 0 π : 0 π 1-1 1 1 cos 0 π : 0 π onto 1 1
59 27 57 58 mpbir2an cos 0 π : 0 π 1-1 onto 1 1