Metamath Proof Explorer


Theorem recosval

Description: The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion recosval A cos A = e i A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 recn A A
3 cjmul i A i A = i A
4 1 2 3 sylancr A i A = i A
5 cji i = i
6 5 oveq1i i A = i A
7 cjre A A = A
8 7 oveq2d A i A = i A
9 6 8 eqtrid A i A = i A
10 4 9 eqtrd A i A = i A
11 10 fveq2d A e i A = e i A
12 mulcl i A i A
13 1 2 12 sylancr A i A
14 efcj i A e i A = e i A
15 13 14 syl A e i A = e i A
16 11 15 eqtr3d A e i A = e i A
17 16 oveq2d A e i A + e i A = e i A + e i A
18 17 oveq1d A e i A + e i A 2 = e i A + e i A 2
19 cosval A cos A = e i A + e i A 2
20 2 19 syl A cos A = e i A + e i A 2
21 efcl i A e i A
22 reval e i A e i A = e i A + e i A 2
23 13 21 22 3syl A e i A = e i A + e i A 2
24 18 20 23 3eqtr4d A cos A = e i A