Metamath Proof Explorer


Theorem recp1lt1

Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005)

Ref Expression
Assertion recp1lt1 A 0 A A 1 + A < 1

Proof

Step Hyp Ref Expression
1 ltp1 A A < A + 1
2 recn A A
3 ax-1cn 1
4 addcom A 1 A + 1 = 1 + A
5 2 3 4 sylancl A A + 1 = 1 + A
6 1 5 breqtrd A A < 1 + A
7 6 adantr A 0 A A < 1 + A
8 2 adantr A 0 A A
9 1re 1
10 readdcl 1 A 1 + A
11 9 10 mpan A 1 + A
12 11 adantr A 0 A 1 + A
13 12 recnd A 0 A 1 + A
14 0lt1 0 < 1
15 addgtge0 1 A 0 < 1 0 A 0 < 1 + A
16 14 15 mpanr1 1 A 0 A 0 < 1 + A
17 9 16 mpanl1 A 0 A 0 < 1 + A
18 17 gt0ne0d A 0 A 1 + A 0
19 8 13 18 divcan1d A 0 A A 1 + A 1 + A = A
20 11 recnd A 1 + A
21 20 mulid2d A 1 1 + A = 1 + A
22 21 adantr A 0 A 1 1 + A = 1 + A
23 7 19 22 3brtr4d A 0 A A 1 + A 1 + A < 1 1 + A
24 simpl A 0 A A
25 24 12 18 redivcld A 0 A A 1 + A
26 ltmul1 A 1 + A 1 1 + A 0 < 1 + A A 1 + A < 1 A 1 + A 1 + A < 1 1 + A
27 9 26 mp3an2 A 1 + A 1 + A 0 < 1 + A A 1 + A < 1 A 1 + A 1 + A < 1 1 + A
28 25 12 17 27 syl12anc A 0 A A 1 + A < 1 A 1 + A 1 + A < 1 1 + A
29 23 28 mpbird A 0 A A 1 + A < 1