Metamath Proof Explorer


Theorem recsex

Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Assertion recsex A No A 0 s x No A s x = 1 s

Proof

Step Hyp Ref Expression
1 0sno 0 s No
2 slttrine A No 0 s No A 0 s A < s 0 s 0 s < s A
3 1 2 mpan2 A No A 0 s A < s 0 s 0 s < s A
4 sltneg A No 0 s No A < s 0 s + s 0 s < s + s A
5 1 4 mpan2 A No A < s 0 s + s 0 s < s + s A
6 negs0s + s 0 s = 0 s
7 6 breq1i + s 0 s < s + s A 0 s < s + s A
8 5 7 bitrdi A No A < s 0 s 0 s < s + s A
9 negscl A No + s A No
10 precsex + s A No 0 s < s + s A y No + s A s y = 1 s
11 9 10 sylan A No 0 s < s + s A y No + s A s y = 1 s
12 simprl A No 0 s < s + s A y No + s A s y = 1 s y No
13 12 negscld A No 0 s < s + s A y No + s A s y = 1 s + s y No
14 simpll A No 0 s < s + s A y No A No
15 simpr A No 0 s < s + s A y No y No
16 14 15 mulnegs1d A No 0 s < s + s A y No + s A s y = + s A s y
17 14 15 mulnegs2d A No 0 s < s + s A y No A s + s y = + s A s y
18 16 17 eqtr4d A No 0 s < s + s A y No + s A s y = A s + s y
19 18 eqeq1d A No 0 s < s + s A y No + s A s y = 1 s A s + s y = 1 s
20 19 biimpd A No 0 s < s + s A y No + s A s y = 1 s A s + s y = 1 s
21 20 impr A No 0 s < s + s A y No + s A s y = 1 s A s + s y = 1 s
22 oveq2 x = + s y A s x = A s + s y
23 22 eqeq1d x = + s y A s x = 1 s A s + s y = 1 s
24 23 rspcev + s y No A s + s y = 1 s x No A s x = 1 s
25 13 21 24 syl2anc A No 0 s < s + s A y No + s A s y = 1 s x No A s x = 1 s
26 11 25 rexlimddv A No 0 s < s + s A x No A s x = 1 s
27 26 ex A No 0 s < s + s A x No A s x = 1 s
28 8 27 sylbid A No A < s 0 s x No A s x = 1 s
29 precsex A No 0 s < s A x No A s x = 1 s
30 29 ex A No 0 s < s A x No A s x = 1 s
31 28 30 jaod A No A < s 0 s 0 s < s A x No A s x = 1 s
32 3 31 sylbid A No A 0 s x No A s x = 1 s
33 32 imp A No A 0 s x No A s x = 1 s