Metamath Proof Explorer


Theorem rectbntr0

Description: A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Assertion rectbntr0 A A int topGen ran . A =

Proof

Step Hyp Ref Expression
1 nnex V
2 1 canth2 𝒫
3 domnsym 𝒫 ¬ 𝒫
4 2 3 mt2 ¬ 𝒫
5 retop topGen ran . Top
6 simpl A A A
7 uniretop = topGen ran .
8 7 ntropn topGen ran . Top A int topGen ran . A topGen ran .
9 5 6 8 sylancr A A int topGen ran . A topGen ran .
10 opnreen int topGen ran . A topGen ran . int topGen ran . A int topGen ran . A 𝒫
11 10 ex int topGen ran . A topGen ran . int topGen ran . A int topGen ran . A 𝒫
12 9 11 syl A A int topGen ran . A int topGen ran . A 𝒫
13 reex V
14 13 ssex A A V
15 7 ntrss2 topGen ran . Top A int topGen ran . A A
16 5 15 mpan A int topGen ran . A A
17 ssdomg A V int topGen ran . A A int topGen ran . A A
18 14 16 17 sylc A int topGen ran . A A
19 domtr int topGen ran . A A A int topGen ran . A
20 18 19 sylan A A int topGen ran . A
21 ensym int topGen ran . A 𝒫 𝒫 int topGen ran . A
22 endomtr 𝒫 int topGen ran . A int topGen ran . A 𝒫
23 22 expcom int topGen ran . A 𝒫 int topGen ran . A 𝒫
24 20 21 23 syl2im A A int topGen ran . A 𝒫 𝒫
25 12 24 syld A A int topGen ran . A 𝒫
26 25 necon1bd A A ¬ 𝒫 int topGen ran . A =
27 4 26 mpi A A int topGen ran . A =