Metamath Proof Explorer


Theorem recval

Description: Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion recval A A 0 1 A = A A 2

Proof

Step Hyp Ref Expression
1 cjcl A A
2 1 adantr A A 0 A
3 simpl A A 0 A
4 2 3 mulcomd A A 0 A A = A A
5 absvalsq A A 2 = A A
6 5 adantr A A 0 A 2 = A A
7 4 6 eqtr4d A A 0 A A = A 2
8 abscl A A
9 8 adantr A A 0 A
10 9 recnd A A 0 A
11 10 sqcld A A 0 A 2
12 cjne0 A A 0 A 0
13 12 biimpa A A 0 A 0
14 11 2 3 13 divmuld A A 0 A 2 A = A A A = A 2
15 7 14 mpbird A A 0 A 2 A = A
16 15 oveq2d A A 0 1 A 2 A = 1 A
17 abs00 A A = 0 A = 0
18 17 necon3bid A A 0 A 0
19 18 biimpar A A 0 A 0
20 sqne0 A A 2 0 A 0
21 10 20 syl A A 0 A 2 0 A 0
22 19 21 mpbird A A 0 A 2 0
23 11 2 22 13 recdivd A A 0 1 A 2 A = A A 2
24 16 23 eqtr3d A A 0 1 A = A A 2